国产日韩无 I 亚洲观看视频 I 欧美性性性性性色大片免费的 I 成人动漫在线观看 I 一级做a爱片性色毛片www I 夜色约爱网站 I 欧美美女色 I 国产aa视频 I 久久久久国产精品无码免费看 I 国产免费av网 I 2018中文字幕第一页 I 999在线观看精品免费不卡网站 I 国产精品久久久精品 I 国产国产人免费人成免费视频 I 孕妇特级毛片ww无码内射 I 婷婷激情四射 I 免费观看欧美猛交视频黑人 I 国产免费色视频 I 日本a级黄绝片a一级啪啪 I www.爱色av.com I 免费在线观看小视频 I 欧美日本免费 I 亚洲 高清 在线 I 国产九色 I 久久国产亚洲精品超碰热 I 欧美wwwwww I 狠狠操影院 I 免费污视频在线 I 四虎海外永久 I 色偷偷亚洲精品一区二区 I 亚洲国产精品精华液999 I 精品美女永久免费视频 I 成人动漫黄在线观看 I 美女在线免费网站 I 麻豆久久精品

Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate

2019-11-11 14:35:15 adman 70
文件格式 :
.pdf
立即下載

Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate

ChenglongShiabYongzhongJiaaChaoZhangabHongLiucYanJinga


Highlights


  • ?

  • We proposed a new system for Li recovery from salt lake brine by extraction using an ionic liquid.

  • ?

  • Cation exchange was proposed to be the mechanism of extraction followed in ionic liquid.

  • ?

  • This ionic liquid system shown considerable extraction ability for lithium and the single extraction efficiency of lithium reached 87.28% under the optimal conditions.


Abstract

Lithium is known as the energy metal and it is a key raw material for preparing lithium isotopes which have important applications in nuclear energy source. In this work, a typical room temperature ionic liquid (RTILs), 1-butyl-3-methyl-imidazolium hexafluorophosphate ([C4mim][PF6]), was used as an alternative solvent to study liquid/liquid extraction of lithium from salt lake brine. In this system, the ionic liquid, NaClO4 and tributyl phosphate (TBP) were used as extraction medium, co-extraction reagent and extractant respectively. The effects of solution pH value, phase ratio, ClO4? amount and other factors on lithium extraction efficiency had been investigated. Optimal extraction conditions of this system include the ratio of TBP/IL at 4/1 (v/v), O/A at 2:1, n(ClO4?)/n(Li+) at 2:1, the equilibration time of 10 min and unadjusted pH. Under the optimal conditions, the single extraction efficiency of lithium was 87.28% which was much higher than the conventional extraction system. Total extraction efficiency of 99.12% was obtained by triple-stage countercurrent extraction. Study on the mechanism revealed that the use of ionic liquid increased the extraction yield of lithium through cation exchange in this system. Preliminary results indicated that the use of [C4mim][PF6] as an alternate solvent to replace traditional organic solvents (VOCs) in liquid/liquid extraction was very promising.



標簽:  TFSI離子液體,離子液體,TFSI,LiTFSI